Strong Convergence for Split-Step Methods in Stochastic Jump Kinetics

نویسنده

  • Stefan Engblom
چکیده

Mesoscopic models in the reaction-diffusion framework have gained recognition as a viable approach to describing chemical processes in cell biology. The resulting computational problem is a continuous-time Markov chain on a discrete and typically very large state space. Due to the many temporal and spatial scales involved many different types of computationally more effective multiscale models have been proposed, typically coupling different types of descriptions within the Markov chain framework. In this work we look at the strong convergence properties of the basic first order Strang, or Lie–Trotter, split-step method, which is formed by decoupling the dynamics in finite time steps. Thanks to its simplicity and flexibility, this approach has been tried in many different combinations. We develop explicit sufficient conditions for pathwise well-posedness and convergence of the method, including error estimates, and we illustrate our findings with numerical examples. In doing so, we also suggest a certain partition of unity representation for the split-step method, which in turn implies a concrete simulation algorithm under which trajectories may be compared in a pathwise sense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theta schemes for SDDEs with non-globally Lipschitz continuous coefficients

Keywords: Stochastic differential delay equation (SDDE) Split-step theta scheme Stochastic linear theta scheme Strong convergence rate Exponential mean square stability a b s t r a c t This paper establishes the boundedness, convergence and stability of the two classes of theta schemes, namely split-step theta (SST) scheme and stochastic linear theta (SLT) scheme, for stochastic differential de...

متن کامل

Numerical methods for nonlinear stochastic differential equations with jumps

We present and analyse two implicit methods for Ito stochastic differential equations (SDEs) with Poisson-driven jumps. The first method, SSBE, is a split-step extension of the backward Euler method. The second method, CSSBE, arises from the introduction of a compensated, martingale, form of the Poisson process. We show that both methods are amenable to rigorous analysis when a one-sided Lipsch...

متن کامل

Strong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms

‎Our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove a strong convergence theorem for approximating a solution of split equality fixed point problem for quasi-nonexpansive mappings in a real Hilbert space‎. ‎So many have used algorithms involving the operator norm for solving split equality fixed point problem‎, ‎...

متن کامل

Strong convergence rate of principle of averaging for jump-diffusion processes

Abstract We study jump-diffusion processes with two well-separated time scales. It is proved that the rate of strong convergence to the averaged effective dynamics is of order O(ε1/2), where ε 1 is the parameter measuring the disparity of the time scales in the system. The convergence rate is shown to be optimal through examples. The result sheds light on the designing of efficient numerical me...

متن کامل

Strong Convergence Rates for Backward Euler on a Class of Nonlinear Jump-Diffusion Problems∗

We generalise the current theory of optimal strong convergence rates for implicit Euler-based methods by allowing for Poisson-driven jumps in a stochastic differential equation (SDE). More precisely, we show that under one-sided Lipschitz and polynomial growth conditions on the drift coefficient and global Lipschitz conditions on the diffusion and jump coefficients, three variants of backward E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2015